WILLIAM RAINEY HARPER COLLEGE BUSINESS AND SOCIAL SCIENCE DIVISION GENERAL COURSE OUTLINE

GEG	150	GIS and Mapping Principles	(2 - 2)	3
Course	Course	Course Title	Lec-Lab	Semester
Prefix	Number			Hours

COURSE DESCRIPTION

This course provides an introduction to geospatial technologies, such as Geographic Information Systems (GIS), Global Positioning Systems (GPS), and Remote Sensing through hands-on computer based exercises. The fundamental principles of map use, interpretation, and design are also included in this course.

TOPICAL OUTLINE

- I. Introduction to Geospatial Technologies
 - A. Uses
 - B. Visualization and analysis tools
 - C. Careers
- II. Geographic Concepts
 - A. Datums, coordinate systems, projection types
 - B. Scale in GIS
 - C. Geographic representation (discrete objects, continuous phenomena)
 - D. Spatial pattern recognition
 - E. Geographic inquiry process
- III. Map Design and Analysis
 - A. Base maps
 - B. Map types, uses, and interpretation
 - C. Cartographic design principles
 - D. Interactive web maps
- IV. GPS Data Collection
 - A. Global Navigation Satellite System (GNSS) overview
 - B. Data quality issues
 - C. Mission planning
 - D. Post processing
- V. GIS Fundamentals
 - A. GIS software functionality
 - B. Viewing and selecting data
 - C. Introduction to buffers and overlay operations
 - D. Introduction to geoprocessing operations
 - E. Geocoding overview
- VI. Remote Sensing Overview
 - A. Aerial photograph interpretation
 - B. Remote sensing overview
 - C. Public sources of remote sensing data

METHODS OF PRESENTATION

- 1. Lecture
- 2. Cooperative learning
- 3. Discussion
- 4. Hands-on lab exercises

STUDENT OUTCOMES: (The student should...)

- 1. differentiate between and describe GIS, GPS, and remote sensing technologies.
- 2. understand the purpose of map projections, map scale, and coordinate systems.
- 3. differentiate between the representation of discrete and non-discrete phenomena in GIS systems
- 4. demonstrate proficiency in the basic functions of geospatial software and hardware.
- 5. apply cartographic principles in designing and constructing maps for different purposes and audiences
- 6. demonstrate proficiency in the creation and acquisition of spatial data with a GPS receiver.
- 7. understand the basic concepts of geocoding, building data queries, and using geoprocessing tools.
- 8. demonstrate awareness of fundamental remote sensing concepts.
- 9. identify problems and standards with accuracy of data.

METHODS OF EVALUATION

Grades are based on demonstrated proficiency in subject matter. Proficiency is determined from:

- 1. Completion of laboratory exercises
- 2. Passing exams
- 3. Completion of various homework assignments

TEXTBOOK & INSTRUCTIONAL MATERIALS

Shellito, Introduction to Geospatial Technologies, 2nd ed., W H. Freeman, 2014

Prepared by: Mukila Maitha

Fall, 2014