WILLIAM RAINEY HARPER COLLEGE

BUSINESS AND SOCIAL SCIENCE DIVISION GENERAL COURSE OUTLINE

GEG	150	Introduction to Geospatial Technologies	(2-2)	3
Course	Course	Course Title	(Lec-Lab)	Semester
Prefix	Number			Hours

Course Description

Provides an introduction to geospatial technologies, such as Geographic Information Systems (GIS), Global Positioning Systems (GPS), and Remote Sensing through hands-on computer based exercises. The essential principles of map use and design, and spatial analysis are also included in this course. Fundamental desktop computer skills assumed. IAI S4 905

Topical Outline

- I. Introduction to Geospatial Technologies
 - A. History and contemporary uses
 - B. Visualization and analysis tools
 - C. Careers
- II. Geographic Concepts
 - A. Datums, coordinate systems, projection types
 - B. Scale in GIS
 - C. Geographic representation
 - D. Spatial pattern recognition
 - E. Geographic inquiry process
- III. Map Design and Analysis
 - A. Map types, uses, and interpretation
 - B. Cartographic design principles
 - C. Thematic maps of physical or human geography
 - D. Interactive web maps
- IV. Survey of Global Navigation Satellite Systems (GNSS)
 - A. History of GNSS
 - B. GNSS components
 - C. Mission planning considerations
 - D. GNSS systems around the world
- V. GIS Fundamentals
 - A. GIS software functionality
 - B. GIS data types
 - C. Spatial distribution and patterns
 - D. Introduction to spatial databases
 - E. Viewing and selecting data
 - F. Georeferencing

- G. Geocoding
- H. Introduction to spatial analysis
- VI. Remote Sensing Overview
 - A. Aerial photograph interpretation
 - B. Remote sensing overview
 - C. Public sources of remote sensing data

Method of Presentation

- 1. Lecture
- 2. Class Discussion
- 3. Other: Cooperative learning, Hands-on lab exercises

Student Outcomes (The student should)

- 1. differentiate between and describe GIS, GPS and remote sensing technologies.
- 2. understand the purpose of map projections, map scale, and coordinate systems.
- 3. differentiate between the representation of discrete and non-discrete phenomena in GIS systems.
- 4. demonstrate proficiency in the basic functions of geospatial software and hardware.
- 5. apply cartographic principles in designing and constructing maps for different purposes.
- 6. demonstrate and understanding of GNSS systems and mission planning considerations.
- 7. understand GIS data types and the basic structure of spatial databases.
- 8. apply GIS techniques, such as geocoding and georeferencing to data sets.
- 9. understand the basic concepts of spatial analysis, such as, recognizing spatial patterns in the cultural and/or physical world, extracting data using queries, and foundational overlay techniques.
- 10. demonstrate awareness of fundamental remote sensing concepts.

Methods of Evaluation

Grades are based on demonstrated proficiency in subject matter. Proficiency is determined from:

- 1. Completion of laboratory exercises
- 2. Passing exams
- 3. Completion of various homework assignments

Textbook & Instructional Materials

Required

Shellito. Introduction to Geospatial Technologies. 3rd Edition. W. H. Freeman, 2016 ISBN: 9781464188725

Gorr and Kurland. GIS Tutorial 1: Basic Workbook. 10.3x Edition. ESRI Press, 2016 ISBN: 9781589484566

Prepared by: Mukila Maitha Fall, 2020